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1. INTRODUCTION

1.1 Background. Residents from surrounding communities have complained about

gun impulse noise emanating from Army proving grounds. The noise could be reduced

by firing from an enclosure to restrict blast wave propagation. The inside surfaces of the

enclosure may be as far away as 100 calibers from the weapon muzzle. Designing an enclosure

requires an estimate of the forces and impulses on its inside surfaces. By generalizing and

extending Smith's work (Smith 1974), BRL developed prediction methods for bare-muzzle

guns based on data collected in the range of 10-50 calibers from the gun muzzle (Fansler

and Schmidt 1983; Fansler 1985; Hleaps et al. 1985). In this approach, the fielId distance

from the muzzle divided by a scaling length is used as the universal independent variable

to plot the peak overpressure, etc. This scaling length depends on such parameters as

the exit muzzle pressure, exit temperature of the propellant, and the field angular position

from the gun bore axis. The resultant predicted free-field muzzle blast can be applied to

incident surfaces to obtain the reflected pressures. However, because data were collected

for smaller distances, the muzzle blast prediction scheme may not approximate well for the

longer distances encountered for the enclosures.

Some investigators have obtained data at greater distances from the muzzle than for the

BRL study. Soo Hoo and Moore (1972) primarily studied various naval guns with data taken

between 20 and 110 calibers. They obtained pressure contours scaled in terms of calibers

appl, cable to naval guns from 40 mm to 8 inch (203 mm) in bore size. They also obtained

data for U. S. Army 20mm M3 and N1197 cannon. Naval guns of different bore diameters but

having the same barrel length in calibers scaled well over a large range of distances. Scaling

for the naval guns was achieved even though the distance in calibers from the ground plane

to the muzzle was not constant. lowever, the different location of the ground-reflecting

plane might have significantly reduced correlation for the 20mm cannon data.

Pater (1981) obtained additional data in the far field, and using Soo Hoc and Moore's

data, investigated the changing relative angular distribution of the gun blast's shock wave

strength with distance. The peak Sound pressure level (PSPL) was approximately 23 dB

greater at the front than at the rear for the pressare wave front located 20 calibers from the

muzzle of a 5 inch/5I naval gun, while ini the far field the PSPL difference dropped to 11.3

dB. Schomer et al. (1979) obtained PSPL differences ranging from 1-1 to 18 dB in the far

field. '_:,is, the muzzle blast decays more rapidly to the front than to the rear.

1.2 Objectives. To assist ini the dcsign of blast enclosures, the present study obtains

detailed overpressure 1-.ta over a large range of distances for a tank cannon, firing saboted



projectiles at high velocities and high exit pressures. The data can be coupled with data from

small arms to improve the predictive method developed at the BRL (Fansler and 1 ',midt
1983; Fansler 1985). Also investigated is the development of the propellant gas plume which

is correlated with pressure irregularities of the blast wave. A high framing rate camera
together with the overpressure data wcrc used to investigate visible features of the muzzle

blast.

2. EXPERIMENTAL SET-UP

The experiment was conducted at the BRL Transonic Range with a 105mm M68 tank
cannon. The axis of the cannon was nominally horizontal. Firing was done with M735

rounds. The muzzle velocity was approximately 1500 m/s and the muzzle pressure was

calculated to be approximately 705 atmospheres.

Nineteen pressure gages were located as shown in Figure 1 at distances from the muzzle
ranging from 15 to 400 calibers. Here distance in calibers is simply r divided by the diameter

of the cannon bore, D. The gages along the 900 ray were placed at closer intervals to mole

closely follow the evolution of the blast wave. Seventeen of the gages, obtained from a
company called PCB, were mounted in flat disks whos upper surfaces were in the plane
that included the direction of the flow from the direct wave toward the gage. Installing

the gages in a flat disk with this orientation allowed measuring the static pressure of the

direct wave. The resonant frequency of these gages was 250 kHIz and the signal rise-time was

2 Is. The diaphragm diameter was 5.5 mm. Two Endevco model 8550M1 microphones were
borrowed from Dr. L. Pater, U. S. Army Construction Engineering Research Laboratory

(CERL). These microphones, which had a resonant frequency of 60 kHz, are more sensitive
than the PCB gages and were placed 150' and tS0' from the direction of the fire and 400
calibers from the muzzle. The height of lie imuzzle was approximately 2 metres above the

ground while the gages greater than 50 calibers from the muzzle were approximately 1.2

metres above the ground. The pressure traces were recorded on a Honeywell tape recorder
with a frequency response of 80 kHIz. Five shots N ere fired and the signals were later digitized

with a Nicolet scope using a sample rate of 5 Its. The time for sampling was 80 ms, which

gave sufficient time to observe the complete passage of the wave.



3. RESULTS

For this investigation, three quantities that partially characterize the blast wave were
obtained. These quantities are illustrated in Figure 2. The peak overpressure is needed to

establish maximum forces and prcssureb on personnel and equipment. The positive phase

duration is needed together with the peak overpressure to calculate the impulse given to
structures. The time of arrival is needed to establish the shape of the blast wave and from

this the incidence angle of a wave upon a reflecting surface.

3.1 Peak Overpressure. The ground plane produces a reflected wave that interferes
with the direct wave, which is of pi-inary interest. Where there was not complete certainty

that the direct wave value had been obtained, that value was categorized as of questionable

validity. The data for the direct waves that have merged with the reflected waves were

discarded.

3.1.1 B3asic Data Presentation. Figure 3 shows the overpressure-time curve along
the 90' ray at a distance from the muzzle of riD = 15. The main wave has superimposed
upon it small-amplitude high-frequency randomized oscillations that decrease in amplitude
with time. This noise is thought to be caused by turbulent processes in the blast wave and
during blow-down of the gu tube. The reflected wave occurs late enough that the direct
wave's development in the positive phase of the overpressure is not obscured by reflections.

Figure 4 portrays the overpressure-time curve along the 90' ray 400 calibers from the
muzzle. The noise superimposed upon the wave is greatly reduced at these longer dis-
tances and arises from the higher attenuation of high-frequency signals travelling through
the air. The ground reflection is observed to immediately follow the primary blast. The

peak overpressure and time-of-arrival data are tot degraded by the reflected wave but the

positive- phase-duration data must be thrown away.

Examples of overpressure wave data obtained at the front and the back of the cannon are
given in Figure 5 and Figure 6. The wave obtained at the froiht of the gun has a secondary

peak superimpod on its undetpte ttcu pha.ue. The front of the reflected wave follows closely
behind the direct wave's shuck wa'\ in bok tl figUICs but it is thought that the reflected wave

has not increased the peak valuc of the direct wave. Figure 7 shows an example of a merged
wave that must be excluded froui the good data. Most of the peak overpressure and time-

of-arrival data were usable fur buildinig ,il iimproved muzzle blast prediction method.

The peak overpressure data for :30, 100, anid 400 calibers are plotted in Figure 8 as a

3 u •



function of polar angle from the bore-line. For comparison the predicted values are shown
also. The prediction for 30 calibers shows good agreement although the predicted values are

all less than the observed values. The predicted values at the other distances decrease too

rapidly with increasing angle, reflecting that the measured front-to-back ratios of blast wave
strength decreases with distance, as other experimenters have observed (Pater 1981; Soo Heo

and Moore 1972). Figure 9 shows peak overpressure versus distance in calibers. To the front,

the peak overpressures decline faster than predicted. To the rear, the peak overpressures

decline slower than predicted. The rate of peak overpressure decline with distance is in

qualitative agreement with blast wave calculations and data obtained for spherical blast

waves.

3.1.2 Scaled Data Presentation. The distance from the muzzle can be nondimen-

sionalized by the scaling length referred to arlier (Ileaps et al. 1985), and the resulting data

plotted. Figure 10 shows the peak overpressure versus the scaled distance and the predicted

curve. The data is separated lito categcries of good and questionable. The questionable

data corresponds to primary blast waves that are obscured greatly by ground reflections.

The nondimensionalized distances span a large range.

3.1.3 Comparison; with Other Data and Prediction. Some of the data used in

developing the prediction method were used to compare with the present data and the
prediction. The combined data are shown as a function of scaled distance in Figure 11.

Comparisons between the old and new data show agreement. The new data show noticeably

worse agreement t.i two locations.

3.2 Time of Arrival. The time or arrival is plotted versus the distance for different
values of the polar angle, 0, in Figure 12. The data are presented without utilizing the

scaling length since a correction terni tlhAt ccounts for the blast apparently coming from a

center forward of the muzzle (lestloys thc strict scaling (Fansler and Schmidt 1983). Further

scaling analysis of the time-of-airival dat.i will be done \%hen more blast data are collected.

3.3 Positive Phase Duration. 13 cu.se of interference by the reflected wave, the

positive-phase-duration data for this expi itiiiezt aie restricted to the positions close to the

muzzle. Figure 13 shows the pusitiv'e l)lpite In ation as a function of the distance in calibers,

with the polar angle as the l),ti aiitt. B1tc(TaI1e uf wave reflection from the ground, little

valid daita were obtained. Nevet tli:m.S, lte data wecte obtained close to the muzzle of a gun



with high-velocity high-muzzle-pressure conditions. No other data will be obtained for these

ballistic conditions.

3.4 Wave Anomalies. For some probe positions, the blast wave signatures included

a precursor portion. Examples of precursor waves can be seen in Figure 6 and Figure 7.

These precursor waves were analyzed and possible hypotheses were developed, such as the

possibility that the precursor generated by the projectile in-bore would not be overtaken by

the main blast wave. The predictive model was used to obtain time of arrival for both the

precursor blast and the main blast. The predictive model showed that the main blast wave

overtakes the precursor wave for the locations of interest. We also investigated whether there

might be crosstalk between signal lines. Crosstalk was ruled out but we can find no other

plausible explanation for the precursor signals.

Figure 14 shows time of arrival versus polar angle at 100 calibers for both the main blast

and the precursor wave. The precursor arrival times do not always diminish with smaller

values of the polar angle as occurs for main blast arrival times. Figure 15 shows the time-

of-arrival data at 400 calibers. For larger angles, the precursor seems to be travelling slower

than the front of the main blast \wave. Since the amplitude of the precursor wave is smaller,

the precursor should be travelling with less velocity than the main blast wave, if the two

waves are independent. Iowever, no such clear tiend is seen for the smaller angles.

Figure 16 shows all the precursor data as a function of r/D, where the time of arrival

is nondimtnsionalized by the ambient, speed of sound divided by the bore diameter, D.

The data show the precursor wave travelling at approximately the speed of sound, which is

expected for these small-amplitude waves.

The blast wave signatures all have high-frequtency waves - that for the most part appear

random - superimposed upon the basic shape. However, almost all have a distinct positive-

going pulse appearing sometime after the front of the wave passes. Figures 4 and 5 both

clearly show these positive-going ptulses. Figutre 17 shows a comparison between the time

of arrival for the main blast and the l)ositive-pressure pulses. The times of arrival are

again multiplied by the amibient speed of sdum divided by D to obtain nondimensionalized

quantities. The time-of-arrival differ'ciics. inc.ease to the front with dlmtanc- but decrease

to the rear. The main wave travel speed cotiuld account for this difference to the front.

If the origin of the pressure ptulse is in ['ont of the origin of tLe main blast, the time-of-

arrival differences could dccicase to tw sides. ho%%wever, there is no clear explanation for the

difference decrease at 1S0'.

It was originally thought that the pulke might be caused by secondary flash. Accordingly,



the high-framing-rate camera data. were used to outline the boundaries of the propellant gas

and incandescence. Photographs of the firings show that the propellant gas exiting the

tube is incandescent. The propellant gas expands forward for several metres, still in an

incandescenc condition. Finally, the piopellant gas burns with diminishing intensity starting
from the rear and with the incandescent boundary moving forward. Where burning has

ceased in the propellant gas, smoke remains in the same volume. Figure 18 shows the top

and bottom boundaries of propellant gas an l incandescence. The bottom boundary is limited
in its movement by the ground. The velocity of the top boundary decreases until around 7

nis where it abruptly increases but then declines monotonically. This velocity increase may
be caused by the reflection of pressure waves from the ground plane. Figure 19 shows the

front and rear boundaries of the incandescent material. Again the boundary appears to speed
up at around 7 ms. This velocity increase could send out a pressure pulse superimposed

upon the wave. Thus this velocity increase does not appear to be connected with secondary

flash as origina.lly thought but rather vith the partial confinement of the propellant exhaust

plume by the ground plane. The time for the pulse to be sent out is generally consistent
with the data obtained in Figure 17.

4. SUMMARY AND CONCLUSIONS

Blast wave data were obtained around a tank gun weapon at a large range of distances

and angles to add to a muzzle blast database. The completed database will be used to

improve the present prediction metlhod. \Vith a reduced-scale tank cannon, the ground

plane could have been located far enough away to reduce the influence of the reflected wave.

Since the cost would have been prohibitive to build a reduced-scale model, a 105 mm cannon

was used to fire M735 projectiles.

Five firing records were obtained hl'01m 19 pl')ssure gages. The peak overpressure, time-
of-arrival, and positive-phase-duratioil data were obtained and presented. The front-to-

back peak oveiptessure d.B diflerences dcreased with distance, as other investigators have

noted. The tmount of usable positive-lhse-duration data were limited by interfering waves
reflecting from the ground plane. ThIe data fum the various quantities were used to compare

with the predicted values.

Some wave anomalies were investigated. '1 he precutrsor signals were travelling at a lower
velocity than the main blast wave ti ont for the lager polar angles. Lower velocities were

expected - the prMecutbur shock wave ht'mit hiu a smaller shock strength than the'main wave

blast front - since waxes with lower shu k m tcugth tia\el slower. However, this trend was not

observed for the smaller plular aigles tiutl thc exi!,tece of these pecuisor shock waves cannot

6I



be plausibly explained. The positive pulse occurring during the wave's underpressure phase

is thought to be caused by the confinement of the exhaust plume by the ground. The next

planned series of tests are designed to miiiimze blast wave interaction with the ground plane.

To see if the precursor and positive-pressure waves are cause by ground-plane interactions,

we will search for their existence in the next test series.
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